Learn about factorials and how to evaluate expressions that contain them. This video explains the concept of factorials and provides step-by-step solutions to several evaluation problems. Perfect for students learning combinatorics or algebra!
top of page

рд╕реАрдЦрдиреЗ рдХреЗ рд▓рд┐рдП рдирд┐рдГрд╢реБрд▓реНрдХ рдЧрдгрд┐рдд рдФрд░ рд╕рд╛рдВрдЦреНрдпрд┐рдХреА рд╡реАрдбрд┐рдпреЛ!
тАЛрдЬрдЧрджреАрд╢ рдЪрд╛рд╡рд▓рд╛ рдж реНрд╡рд╛рд░рд╛
тАЛ"рд╕рд╛рдВрдЦреНрдпрд┐рдХреА рд╡рд┐рдЬреНрдЮрд╛рди рдХрд╛ рд╡реНрдпрд╛рдХрд░рдг рд╣реИред"
тАЛрдХрд╛рд░реНрд▓ рдкрд┐рдпрд░реНрд╕рди

bottom of page
ЁЭРРЁЭРоЁЭРЮЁЭРмЁЭРнЁЭРвЁЭРиЁЭРз: Evaluate (8!-6(6!))/(3!+4)
ЁЭРТЁЭРиЁЭРеЁЭРоЁЭРнЁЭРвЁЭРиЁЭРз:
First, let's evaluate the numerator:
8! - 6(6!)
Recall that 8! = 8 ├Ч 7 ├Ч 6! = 56 ├Ч 6!
So, the numerator becomes:
56 ├Ч 6! - 6 ├Ч 6!
Factor out 6!:
(56 - 6) ├Ч 6! = 50 ├Ч 6!
Now, let's evaluate the denominator:
3! + 4
Recall that 3! = 3 ├Ч 2 ├Ч 1 = 6
So, the denominator becomes:
6 + 4 = 10
Now, divide the numerator by the denominator:
(50 ├Ч 6!) / 10
= 5 ├Ч 6!
To get a numerical value, calculate 6!:
6! = 6 ├Ч 5 ├Ч 4 ├Ч 3 ├Ч 2 ├Ч 1 = 720
So, the final value is:
5 ├Ч 720 = 3600
Therefore, (8! - 6(6!)) / (3! + 4) = 3600.