Learn about factorials and how to evaluate expressions that contain them. This video explains the concept of factorials and provides step-by-step solutions to several evaluation problems. Perfect for students learning combinatorics or algebra!
top of page

рд╕реАрдЦрдиреЗ рдХреЗ рд▓рд┐рдП рдирд┐рдГрд╢реБрд▓реНрдХ рдЧрдгрд┐рдд рдФрд░ рд╕рд╛рдВрдЦреНрдпрд┐рдХреА рд╡реАрдбрд┐рдпреЛ!
тАЛрдЬрдЧрджреАрд╢ рдЪрд╛рд╡рд▓рд╛ рдж реНрд╡рд╛рд░рд╛
тАЛ"рд╕рд╛рдВрдЦреНрдпрд┐рдХреА рд╡рд┐рдЬреНрдЮрд╛рди рдХрд╛ рд╡реНрдпрд╛рдХрд░рдг рд╣реИред"
тАЛрдХрд╛рд░реНрд▓ рдкрд┐рдпрд░реНрд╕рди

bottom of page
ЁЭРРЁЭРоЁЭРЮЁЭРмЁЭРнЁЭРвЁЭРиЁЭРз: Evaluate (4(45!)+46!)/150(44!)
ЁЭРТЁЭРиЁЭРеЁЭРоЁЭРнЁЭРвЁЭРиЁЭРз:
First, let's simplify the numerator:
4(45!) + 46!
Recall that 46! = 46 ├Ч 45!
So, the numerator becomes:
4(45!) + 46 ├Ч 45!
Factor out 45!:
(4 + 46) ├Ч 45! = 50 ├Ч 45!
Now, let's look at the denominator:
150(44!)
We need to relate 45! to 44!. Recall that 45! = 45 ├Ч 44!
Now, divide the numerator by the denominator:
(50 ├Ч 45!) / (150 ├Ч 44!)
Substitute 45! = 45 ├Ч 44!:
(50 ├Ч 45 ├Ч 44!) / (150 ├Ч 44!)
Cancel out 44! from the numerator and the denominator:
(50 ├Ч 45) / 150
Simplify the expression:
(50 ├Ч 45) / (3 ├Ч 50) (since 150 = 3 ├Ч 50)
Cancel out 50 from the numerator and the denominator:
45 / 3 = 15
Therefore, (4(45!) + 46!) / (150(44!)) = 15.