Learn about factorials and how to evaluate expressions that contain them. This video explains the concept of factorials and provides step-by-step solutions to several evaluation problems. Perfect for students learning combinatorics or algebra!
top of page

рд╕реАрдЦрдиреЗ рдХреЗ рд▓рд┐рдП рдирд┐рдГрд╢реБрд▓реНрдХ рдЧрдгрд┐рдд рдФрд░ рд╕рд╛рдВрдЦреНрдпрд┐рдХреА рд╡реАрдбрд┐рдпреЛ!
тАЛрдЬрдЧрджреАрд╢ рдЪрд╛рд╡рд▓рд╛ рдж реНрд╡рд╛рд░рд╛
тАЛ"рд╕рд╛рдВрдЦреНрдпрд┐рдХреА рд╡рд┐рдЬреНрдЮрд╛рди рдХрд╛ рд╡реНрдпрд╛рдХрд░рдг рд╣реИред"
тАЛрдХрд╛рд░реНрд▓ рдкрд┐рдпрд░реНрд╕рди

bottom of page
ЁЭРРЁЭРоЁЭРЮЁЭРмЁЭРнЁЭРвЁЭРиЁЭРз: Evaluate (16!-40(14!))/50(13!)
ЁЭРТЁЭРиЁЭРеЁЭРоЁЭРнЁЭРвЁЭРиЁЭРз:
First, let's simplify the numerator:
16! - 40(14!)
Recall that 16! = 16 ├Ч 15 ├Ч 14!
So, the numerator becomes:
(16 ├Ч 15 ├Ч 14!) - 40 ├Ч 14!
Factor out 14!:
(16 ├Ч 15 - 40) ├Ч 14!
Calculate 16 ├Ч 15:
16 ├Ч 15 = 240
So, the numerator is:
(240 - 40) ├Ч 14! = 200 ├Ч 14!
Now, let's look at the denominator:
50(13!)
We need to relate 14! to 13!. Recall that 14! = 14 ├Ч 13!
Now, divide the numerator by the denominator:
(200 ├Ч 14!) / (50 ├Ч 13!)
Substitute 14! = 14 ├Ч 13!:
(200 ├Ч 14 ├Ч 13!) / (50 ├Ч 13!)
Cancel out 13! from the numerator and the denominator:
(200 ├Ч 14) / 50
Simplify the expression:
(200 ├Ч 14) / 50 = (4 ├Ч 14) / 1
Calculate 4 ├Ч 14:
4 ├Ч 14 = 56
Therefore, (16! - 40(14!)) / (50(13!)) = 56.